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ABSTRACT 
HAMLET is a CAD tool that translates a user 

specification of a multiple-valued expression into a layout 
of a multiple-valued programmable logic array (MVL- 
PLA) which realizes that expression. It is modular to 
accommodate future minimization heuristics and future 
MVL-PLA technologies. At present, it implements two 
heuristics, [2] and [8] and one MVL-PLA technology, 
current-mode CMOS [6] .  Specifically, HAMLET accepts 
a sum-of-products expression from the user, applies a 
minimization heuristic, and then produces a PLA layout of 
a multiple-valued current-mode CMOS PLA. 

Besides its design capabilities, HAMLET can also 
analyze heuristics. Random functions can be generated, 
heuristics applied, and statistics computed on the results. 
User-derived expressions can also be analyzed. In addi- 
tion to the mininlization heuristics [2] and [8], HAMLET 
can apply search strategies based on these heuristics, 
which, in the extreme, is exhaustive, producing true 
minimal forms. HAMLET is available to the public; 
instructions on how to obtain this program are in Appen- 
dix A. It is written in C and conforms to the UNIX com- 
mand line format. 

I. INTRODUCTION 
The implementation of multiple-valued logic (MVL) 

circuits in VLSI has created a need for multiple-valued 
logic computer-aided design (MVL-CAD) tools. Pro- 
grammable logic arrays (PLA’s) are of special interest. 
Their design is regular, thus placing a lower demand on 
the tool’s capabilities. Also, the technology for multiple- 
valued PLA’s (MVL PLA’s) exists in CCD [4], current- 
mode CMOS [6], and voltage-mode CMOS [9]. Since the 
subject is so new, there is only one other MVL-CAD tool, 
for MVL-CCD PLA’s [5]. 

This paper describes HAMLET (Heuristic Analyzer 
for Multiple-valued Logic Expression Translation), a 
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tool that accepts an expression, applies minimization algo- 
rithms to the expression, and produces an MVL-PLA that 
realizes the minimized expression. The MVL-PLA layout 
[6] conforms to MOSSIS design rules and the output file 
circuits are in MAGIC format [lo]. Unlike previous 
implementations of heuristics [ 1-3,5,8,12], which 
represent a function intemally as a truth table, HAMLET 
represents the function as a sum-of-products expression. 
Thus, we avoid storage space limitations associated with 
truth tables of even moderately sized functions. lhis 
paper is intended to serve as an introduction to HAMLET. 
A manual, Yurchak and Butler [15], exists giving com- 
plete information on its use. 

Although HAMLET is a CAD tool, it can also be used 
to analyze minimization heuristics. It does this by ran- 
domly generating expressions, applying the heuristics, and 
collecting the results. The use of random functions avoids 
bias that could unfairly favor one heuristic. On the other 
hand, especially chosen functions can be analyzed; this 
allows one to selectively investigate specific heuristic 
characteristics. HAMLET is designed to be easily 
modified. At present, it implements the Pomper and 
Armstrong [8] and Dueck and Miller [2] heuristics, as 
well as various search techniques derived from these. 
Both the basic heuristics and search algorithms can be 
modified. Indeed, we do this now as part of our research 
on improved minimization methods for MVL-PLA’s. 

While there has been little previous work on CAD 
tools for MVL circuits, there has been significantly more 
work on minimization algorithms. We know of three 
heuristic MVL sum-of-products minimization algorithms. 
Each uses the direct cover method, in which a minterm 
(assignment of values to all variables) is first determined 
and then an implicant is found that covers the minterm. 
Pomper and Armstrong [8] introduced in 1981 the first 
known direct cover method for MVL functions. It selects 
a mintem rmzdonzly and chooses the largest iniplicant 
covering the selected minterm. In 1986, Besslich [l] 
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introduced another direct cover method that seeks to cover 
the most isolated minterms first. Like the Pomper and 
Armstrong [8] heuristic, it selects the largest implicant. In 
1987, Dueck and Miller [2] introduced a direct cover 
method that also seeks the most isolated ininterm first (by 
a method different than that of Besslich [l]), but chooses 
an implicant that tends to introduce the fewest discontinui- 
ties when subtracted from the function. Dueck [3] has 
modified the heuristic described in [2] obtaining improved 
performance on specific examples. 

In addition to the Pomper and Armstrong and Dueck 
and Miller heuristics, HAMLET implements adaptations 
of these. Specifically, where these heuristics make one 
choice from several, HAMLET allows a search in which 
possibly all choices are examined. The Besslich heuristic 
was not chosen because of speed considerations. Also, it 
relies on a truth table representation that is not compatible 
with the expression representation we chose to implement. 

11. BACKGROUND 
Let X = ( x l , x 2 , .  . * ,xn ) be a set of iz variables, 

where xi takes on values from R = (0,1, ..., r-1 1. A 
function f (X) is a mapping f : R +R U [ r ) , where r is 
the don’t care value. Specifically, f (X) is said to be an 
n-vuriable r-valued fuizction. Fig. 1 shows an example of 
a 2-variable 4-valued function. A function value f (m ) 

\”. 
x2 

In the realization of functions by a multiple-valued 
PLA, constants and literals occur as operands of the h4IN 
functions. An inzplicantI(X) =p  Q(x1,x2,. . * , x n )  is the 
MIN of a constant and a set of literals where each variable 
xi appears exactly once, and p is a constan in the set 
(1,2, . . . ,  r ) .  For example, I l ( x I j 2 ) = l  x 1  x2 is an 
implicant that is 1 when xl is 1 or 2 and x2 is 2 or 3. An 
implicant of a function f (X) has the property that 
f (x) 2 I (x) for every assignment of values x to variables 
inX andp E (1,2, ..., r-1). For example,Il(xl,x2) is an 
implicant of function f (x x2) shown in Fig. 1. The cir- 
cle in the lower center represents I l(x 1, xz). An implicant 
I (X) of a function f (X) is aprinze inzplicant if there is no 
other implicant I ’ ( X )  off  (X) such that I ’ ( x ) > I ( x )  for 
every assignment of values x to variables in X. For 
example, I ( x l , x 2 )  is not a prime implicant. However, 
1 x1 x2 is a prime implicant. Any function can be 
expressed as the SUM of implicants [ 111. For example, 
the function in Fig. 1 can be expressed as the SUM of six 
implicants, 

1 8 2  3 

1 2 1  3 1 

0 0 0  0 1 1 0  I 0 2 1  1 
f (XI’X2) = 1 X I  x2 + 1 x1 x2 + 1 x1 x2 

0 3 1  1 1 2 2  3 0 0 2  2 + 1 x1  x2 + 1 XI x2 + 2 x1 x 2 .  (1) 

The six circlings in Fig. 1 represent the six implicants in 
this expression. We use the term sum-ofproducts to 
describe functions realized by multiple-valued PLA’s, 
where sum refers to SUM. A sum-of-products expression 
for function f (X) is minimal if there is no other expres- 
sion for f (X) with fewer implicants. Given f (X), impli- 
cant I (X) covers a minterm at m iff (m) = I(m). There- 
fore, g (X) = f  (X) - I (X) has the property g (m) = 0. 
Tirumalai and Butler [ 131 show that, unlike binary minim- 
ization, minimal sum-of-products expressions in higher 
radices consist of nonprime, as well as prime implicants. 

Figure 1. An Example of a 2-Variable 4-Valued Function. 

corresponding to a specific assignment of values m to 
variables in X is called a nziizternz iff 0 < f (m ) < r . For 
example, in Fig. 1 there are seven minterms with value 1, 
three with value 2, and one with value 3. 

Functions realized by the PLA’s described in [4,6,11] 
are composed of three functions, 

1 .  literal: f (x ,) = x 
2. MIN: f(x1,x2)=x1x2 (=minimum(xl,x2)), and 
3. SUM: f ( x l , x 2 )  =x1+x2 (=minimum(xl+x2, r - l), 

where xi is viewed as an integer and + is 
integer addition. The SUM operation (+) is 
thus addition truncated to the highest logic 
value. 

a b  
(= r-1 if a <xl I b , else = 0, 

111. HEURISTIC MINIMIZATION ALGORITHMS 
We have devised improved versions of existing 

heuristic methods for the minimization of expressions for 
implementation by MVL-PLA’s. Existing heuristics, 
when given a choice, choose one option and never back- 
track to determine if another choice would have resulted 
in an improved realization. Our improved versions of 
these heuristics allow some specified degree of search. 
For small expressions, exhaustive search can be applied in 
a reasonable time to produce a minimal expression, while, 
for large expressions, the search can be restricted to avoid 
the excessive computation time of exhaustive search. 

A. THE HEURISTIC TEMPLATE 
All known MVL minimization heuristics use the 

direct cover method. This is a two step process that 
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chooses, for the given function, f (X), 

1. a minterm m off (X), and 
2. an implicant I ( X )  off (X) that covers m , 

Function f (X) - I ( X )  is formed and the two step process 
performed on it, until a final function is obtained consist- 
ing entirely of 0's and r 's (don't cares). With logic values 
viewed as integers, the operation - is ordinary integer sub- 
traction except for the following cases. 1. I f f  (x) is a 
don't care, then so also is f ( x )  - I @ ) .  Thus, a don't care 
value in the original function appears as a don't care in all 
subsequent functions. 2. I f f  ( x )  - I ( x )  is 0 or less and 
the given function is r - 1, then f (x) - I ( x )  is a don't 
care value. This is to accommodate the truncated sum 
operation when the sum of implicant values produce r - 1 
or more. Since any I' - 1 in the given function is poten- 
tially a sum that has been truncated, the algorithm tracks 
such values; otherwise, certain minimal solutions would 
be lost. For example, consider a 4-valued function whose 
minimal sum-of-products expression consists of two 
implicants with constant 2 that cross at some x where the 
function has value 3. Subtracting one of these implicants 

few other minterms) tend to have the lowest clustering 
factor, and are chosen first. Consider again the function in 
Fig. 1. There are seven minterms with the smallest f (m), 
those corresponding to 1's in the map. Among these, the 
minterm m with lowest CF(m)  is x1x2=3 1. Here, the 
clustering factor is 4, while all other clustering factors are 
greater than 4. Note that x1 x 2  = 3 1 is the only 1-mintenn 
that is adjacent to less than two other minterms. 

For a selected minterm, an implicant is chosen that 
has the smallest rbc, relative break count. That is, the 
relative break count is a measure of how many discon- 
tinuities are introduced into a function when the present 
implicant is subtracted. For example, there are four impli- 
cants covering the 1-minterm at x1 x 2  = 3 1. An implicant 
that leaves holes or break up a function tend to have a 
higher rbc than those that do not. This has the intuitive 
interpretation that the preferred implicants are those impli- 
cants whose subtraction leaves a function that is realized 
by as few remaining implicants. 

D. HEURISTICS APPLIED WITH BACKTRACK- 
ING 

The heuristics discussed above proceed from a given 
function to a function consisting entirely of 0's and don't 
cares. At eqch step, only one choice is made, even when 

the case of ties, only one is chosen. In HAMLET, the user 
is given the option of exploring various choices. m a t  is, 
at any point in the algorithm, a set of choices is recorded 

leaves a function with 2's except for a 1 at x.  To realize 
the minimal solution, the heuristic must now realize the 
resulting function with just one implicant. That is, it must 

subtracted from it. 

tics. Formal algorithmic descriptions appear in [ 121. 

"recognize" that the was Once a and that a be there is more than one (equally good) choice. That is, in 

We give here qualitative descriptions of these heuris- 

B. POMPER AND ARMSTRONG [SI 
In this version of the direct cover method, minterm m 

is chosen randomly. Next, the implicant is chosen so that 
1. the implicant value is equal to that of m , 2. the impli- 
cant results in the most 0 values in f ( X ) - I  (X), 3. among 
the set of all implicants from 2. the largest are selected, 
and 4. among the set of implicants from 3, one is arbi- 
trarily chosen. Consider, for example, the function in Fig. 
1. Assume the 1-minterm at x x = 2 3 is the randomly 
chosen minterm. Then, the implicant 1 x 1  x2  is the 
selected implicant because it is uniquely the largest impli- 
cant that produces the most 0's when subtracted from the 
function. 

1 2  1 2 1  3 

C. DUECK AND MILLER [2] 
In this version of the direct cover method, minterm m 

is chosen as the most isolated mirzterm. Specifically, for 
each minterm m with the smallest value f (m ), the clus- 
tering factor CF(m) is computed and the minterm with 
the smallest CF (m ) is chosen. To compute the clustering 
factor, one tallies, for each minterm, adjacent minterms 
with which m can be combined and the directions (vari- 
ables) having at least one minterm with which m can be 
combined. Minterms that are isolated (i.e., surrounded by 

so that- at a later tim-e, when backtracking occurs, these 
altemative choices can be made. This option is imple- 
mented with a recursive program that searches a tree, in 
which nodes correspond to functions and arcs to impli- 
cants. The root node corresponds to the given function 
and all its children to functions derived by subtracting sin- 
gle implicants from the given function. The recursive pro- 
gram calls itself as it moves through the tree searching for 
the realization with fewest implicants. The depth to which 
the program goes corresponds to the number of impli- 
cants. Initially, the program searches to some maximum 
depth determined by the best known expression for the 
given function. As better realizations are found, this max- 
imum depth becomes smaller, until the end when the 
expression with the fewest implicants has been deter- 
mined. At each application of the recursive call, two 
expressions are considered, the current (probably incom- 
plete) solution and the best obtained so far. 

IV. MINIMIZATION USING HAMLET 

A. THE STRUCTURE OF HAMLET 
HAMLET is a family of utility programs. Written in 

the C programming language, it currently runs on the 
UNIX operating system, but should port easily to other 
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environments. The user controls the behavior of HAM- 
LET by supplying command line options formatted 
according to standard UNM conventions. Some of the 
programs that compose HAMLET are 

mvlc 

mvlt 

nzvla 

mvll 

An expression compiler and optimizer. Applies 
one or more heuristics to MVL expressions, 
reports heuristic performance and produces an 
MVL-PLA data file that is the input to the PLA 
layout generator, mvll. 

A test expression generator. Produces sets of 
randomly generated expressions that conform to 
parameters supplied by the user. 

A heuristic performance analyzer. Takes heuris- 
tic performance data from successive runs of 
mvlc and produces statistical data. 

A PLA layout generator. Accepts a data file 
supplied by mvlc and produces a layout of a 
current-mode CMOS PLA realizing the expres- 
sion in its data file. 

B. mvlc - Expression Compiler. 
The most important of these programs is mvlc. Its 

5700 lines of code correspond to about 85% of HAMLET. 
mvlc provides a user-interface similar to that of a typical 
high-level programming language compiler. The user 
creates an input file, using a text editor, consisting of 
MVL expressions. Fig. 2 shows the 2-variable 4-valued 
expression in (1) in the format suitable for mvlc 

4:2: 
+ 1 * x  1 (O,O)*X2(0 ,O) 
+l*XI( 1 ,l)*X2(0,1) 
+1*X1(0,2)*X2(1,1) 

+2*Xl(O,O)*X2(2,2); 

+l*X1(0,3)*X2( 1,l) 
+ 1 *X1( 1,2)*X2(2,3) 

Figure 2. mvlc Format for the Expression in (I). 
mvlc extracts semantic infomiation from the input 

expression and stores it as a linked List. For example, the 
expression given in Fig. 2 is stored as shown hi Fig. 3. 
This original input expression is called EOri . mvlc uses 
this structure as a basis for applying selectecfheuristics in 
an attempt to produce an equivalent structure (identical 
coverage) with fewer implicants. For example, when the 

. value f (m ) of the expression is needed for some assign- 
ment of values m to die variables X, the linked list of 
implicants is scanned (by subroutine EVAL) as the contri- 
bution of each to f ( m )  is tallied. At the end, a correct 
value of f ( m )  is achieved. In addition to reporting 
heuristic performance results, mvlc creates an output file 
representing an optimized MVL expression that is the 
input to mvll, the layout generator. 

Figure 3. Intemal Representation of the Expression in (1). 
Using command line options, the user selects a) one 

or more heuristics and b) a search method used by mvlc . 
There are two categories of search methods, one-pass and 
mu lti-pas s. 

One-Pass Method 

heuristic, H, the one-pass method proceeds as follows. 
This is the default mode. Assuming a user-selected 

Assume three expression data structures: 

E o ~ g  - the original parsed input expression 
EWork - a working expression that is modified 

EFinal - the final (heuristic-optimized) expression 
by the heuristic 

For each input expression Eorig ( 
1. COPY Eori to Ework ; 
2. Initialize kFinal to an empty expression 

3. Repeat ( 
(no implicants); 

3.1 Apply H to Ework, producing an 

3.2 Subtract I from Ework; 
3.3 Add I to EFina, ; 

) until Ework is covered; 
4. Report the results and output EFinal; 

implicant, I ; 

1 
stop 

Figure 4. Algorithm for the One-Pass Method, 

Multi-Pass Method 
The multi-pass method is a backtracking search. 

Treating the current state of the working expression, 
Ework, as a node in an n - a y  tree, each candidate impli- 
cant for that expression, when subtracted from EwCrk, 
yields a daughter node corresponding to an expression 
with one less term. The search can be configured in many 
ways to allow subtle alterations in the performance of the 
selected heuristic. The application of the direct cover 
heuristic invokes two choices a) a minterm selection func- 
tion f M i n  and b) an implicant selection function f,,, . 
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Both are used within a recursive function, fSearch,  whose 
algorithm is shown in Fig 5. The multi-pass method 
applies f in a depth-first search for the shortest path 
to coverage of the input expression. This algorithm is 
shown in Fig 6. 

For the current state of EWork 1 
" ApplyfMin 1 

1.1 Select one or more minterms and save 
them in a list, LMj,, ; 

1 
2, APPIYfImp I 

2.1 For each minterm in LMin ( 
2.1.1 Select one or more implicants and 

save them in a list, L . 
Imp ' 

1 
1 
3. For each implicant 1 in LI,, 1 

3.1 
3.2 
3.3 
3.4 

1 
3.5 
3.6 

1 
1 
Retum 

Push (save) the state Gf Ework and EFinu,; 
Subtract I from Ework ; 
Add I to EFiml ; 
If Ework is covered 1 
3.4.1 Save EFinal; 
3.4.2 Retum; 

Recursively apply f Search ; 
Fop (restore) the state of Ework and EFinal ; 

Figure 5. The Algorithm for f . 

For each input expression EOrig [ 

" EInput to EWork ; 
2. Initialize EFim, to an empty expression 

(no implicants); 
3' f to 'Work ; 
4. Report the results and output the saved EFinul; 

1 
stop 

Figure 6. The Algorithm for the Multi-Pass Method. 

Example of Results from mlc 
To observe how ntvlc applies a heuristic, consider 

once again the function in Fig. 1. This can be realized by 
an expression with six implicants, as shown in (1) and Fig. 
1. Assume the user has established the input file with the 
six implicant expression shown in Fig. 2. Consider the 
application of Dueck and Miller [2] using the one-pass 
method. Fig. 7 shows the selection of the first implicant. 

First, for all minterms of lowest logic value, the clustering 
factor is computed and the lowest is identified. Here, the 
1-minterm at x , x 2  = 3 1 is the only one with the lowest 
clustering factor of al l  minterms with lowest logic value. 
As can be seen in Fig. 7, it is the only 1- 
minterm that is adjacent to one other minterm; all other 
1-minterms are adjacent to at least two other minterms. 

rbc = -3 

3 0 1 1 2  3 rbc = -2 

Figure 7. Selection of the First Implicant Using the 
Dueck and Miller Heuristic in the One-Pass Method. 

Next, the implicant is selected. Fig. 7 shows the four 
implicants that cover the selected minterm, as well as the 
rbc for each. There is exactly one with the lowest rbc . It 
is 

1 *X1( 1,3)*X2( 1,l) . 

This is subtracted from Ework and added to EFiM, as 
shown in Fig. 8. Here, .Ework is the same as the Ework 
shown in Fig. 3 except for an additional implicant on the 
right. This corresponds to -1*X1(1,3)*X2(1,1). This pro- 
cess is repeated until all minterms in Ework evaluate to 0 
or don't care.  In the end, EFinu, is a structure similar to 
EOri , except that its implicants are chosen by the heuris- 
tic. +his structure can be used to generate an input file for 
the layout generator. Fig. 9 shows the expression realized 
by the one-pass Dueck and Miller [2] heuristic applied to 
the function in Fig. 1. As can be seen, only five impli- 
cants are needed, which represents a reduction of one 
implicant over the user-defined expression. 

One limitation of this heuristic is that, for a given 
state of an expression, minterms with the lowest clustering 
factor and implicants with the lowest rbc do not always 
yield the minimal expression. The multi-pass method 
corrects this by examining altematives. To illustrate its 
flexibility, consider the running example expression. If 
the multi-pass method is applied to the expression in Fig. 
2, and we require that for each partial expression, the three 
implicants of lowest rbc are chosen (in comparison with 
the one-pass method, in which only one implicant is 
chosen), then a solution with four implicants is chosen, as 
shown in Fig. 10. It is interesting that this solution is not 
found in the one-pass method because, in choosing 
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EWork 

# v n r = 2  coeff = I coeff = 1 
RBC RBC 

bounds bounds 
# teims = I 

coeff = 1 coeff = 1 coeff = 1 coeff = 2 coeff = -1 
RBC RBC RBC RBC RBC 

bounds bounds bounds bounds bounds 

I I I I 

Figure 8. Ework and EFiMl 

Figure 9. The Expression Achieved by the Dueck and 
MiIler Heuristic in the One-Pass Method. 

Figure 10. The Expression Achieved by the Dueck and 
Miller Heuristic in the Multi-Pass Method. 

the first implicant, there is only one with the lowest rbc , 
and it is not part of any minimal expression. The multi- 
pass search succeeds because it considers more than one 
path in the search tree. 

User Options 
What makes ntvlc useful is not just its ability to apply 

different heuristics and observe the results, but the way in 
which it facilitates the analysis of different heuristic and 
search options over a large set of expressions. For exam- 
ple, in the multi-pass method, the behavior of f M i n  and 
.f,,,,,, as well as certain aspects of fSearc,, are under user 
control. For each choice, there are various data that can be 
collected. For example, HAMLET can answer the follow- 
ing 

I I I I 

After the First Implicant is Chosen. 

1. "For which of 1000 randomly generated expressions 
does Dueck and Miller do better than Pomper 
and Armstrong?" 

2. "For how many expressions in a set of 2000 random 
expressions does Dueck and Miller yield greater 
than 10% more implicants than is in the original 
expression? It 

3. "What is the mean performance of some search 
option as compared to Pomper and Armstrong?" 

In many cases, such problems are solved automatically by 
nzvlc in conjunction with other programs in the HAMLET 
family. For example, we use nzvlt to generate large sets of 
random expressions to obtain statistical data on heuristic 
performance. This tool creates ordinary text files that can 
be read and edited by the user if desired. ntvla automati- 
cally executes nzvkc on sets of expression, comparing the 
performance of various heuristic options are graphing the 
results on a Postscript printer. As an example, we can use 
mvla to automatically generate data for a graph of the rela- 
tionship between, say, the number of terms per expression 
and the time to find a solution for a given heuristic. 

C. mvlr - Test Expression Generator 
mvlt is a program that generates a set of random 

expressions for use by nzvlc. The expressions generated 
by nivlt use a random number generator that generates 

1. a nonzero coefficient p from r - 1 possible 
coefficients with uniform distribution and 

2. a set of n intervals (a i ,  bi), where ai 5 bi ,  from the 

set of all [ 2 + r possible intervals with uniform 

distribution, where n is the number of variables. 

One implicant is formed with a structure as follows. 
'1 61 a,  6 2  'n bn 

p XI x2 . . *  
If more than one implicant is requested, then a similar 
process is repeated for each. The generator makes one 
further restriction on the set of implicants. Whenever an 
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implicant is generated, a check is made to see if an impli- 
cant was generated earlier identical to the present one 
except perhaps in the constant. If so, the present one is 
discarded and a new implicant is generated. nivlt, how- 
ever, does not check whether a currently generated expres- 
sion was generated earlier. This would increase consider- 
ably the execution time and only preclude a typically 
unlikely event. 

D. mvla - Statistical Data Analyzer 
An important use of HAMLET is in analyzing the 

behavior of heuristics. This is done in nzvlu, which uses 
random expressions generated by nzvlt and minimized by 
mvlc to produce various graphs and histograms of heuris- 
tic performance. Included in the operations performed by 
mvla are 

1. average value of number of implicants used over the 
ensemble, 

2. percent of the minimized expressions that have 
fewer, the same, and more implicants than the 
number of implicants in the given function set, 

3. total number of implicants used by the minimized 
expressions divided by the total number of impli- 
cants in the given set of expressions 

4. average number of implicants used in the minimized 
expressions where the minimized expression had 
fewer implicants than the given expression. 

An especially useful feature is the automatic generation of 
histograms from the data generated. For example, the 
application of a heuristic on say 1000 functions with say 6 
implicants produces some number of minimized functions 
with 6, 5 ,  etc. implicants. When mvla is completed, a plot 
is printed showing the number of functions for each 
number of implicants in the form of a histogram. Sinii- 
larly, plots can be automatically generated of some 
behavior like the average number of, implicants verses 
radix or the time of computation verses the number of 
variables. An example of the output produced by mvla is 
shown in Fig. 11. Here nivlt was asked to generate 1000 
random 4-valued 2-variable functions each with six impli- 
cants. Both the one-pass (top histogram) and multi-pass 
(bottom histogram) versions of Dueck and Miller were 
applied to this set. The line just below each histogram 
shows statistics associated with the plot above. Starting 
from left to right, the value to the right of the < sign 
shows the fraction of expressions improved by the heuris- 
tic (85% and 94%), the value to the right of the = sign 
shows the fraction of expressions where the heuristic pro- 
duced exactly the same number of implicants as the ran- 
domly generated function (12% and 6%), and the value to 
the right of the < sign shows the fraction expressions 
where the heuristic did not do as well as the randomly 
generated function (3% and 0%). These figures show 
clearly the improvement achieved by the search technique 
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Figure 11. Example of the Output Produced by mvla. 

associated with the multi-pass method. The value to the 
right of Pm: shows the performance, the fraction of the 
total number of implicants in the ensemble used by the 
heuristic (69% and 65%). That is, over all 1000 expres- 
sions generated, the one-pass method h e c k  and Miller 
heuristic used 69% of the 6 . 1000 required in the realiza- 
tion of set of unminimized randomly generated expres- 
sions. The multi-pass method used 4% fewer implicants 
or 65%. The standard deviation appears to the right of the 
performance figure (0.23 and 0.20). Next, is the fraction 
of implicants used by the best (B) expression and the 
worst (W) expression. These are 17% and 17% for the 
best and 133% and 11% for the worst. That is, for the 
one-pass method, out of the 1000 randondy generated 
expressions, the expressions requiring the least and most 
implicants in the expressions after application of the 
heuristic required 17% (or 1) and 133% (or 8) of the 
implicants in the given expression (6). At the extreme 
right is the time required by mvlu complete the analysis. 
This shows that for the one-pass method, 0.01 seconds per 
expression were required, and, for the multi-pass method, 
0.32 seconds per expression were required. Thus, the time 
required rises significantly, because of the search done in 
the multi-pass method. There is a variability in the time 
required by various expressions. That is, nivla prints out a 
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number indicating which expression it is currently minim- 
izing. The times to execute various expressions differ 
greatly, especially in the multi-pass method; some proceed 
quickly, while take others much longer. The rightmost 
figure shows the variance in time required for minimiza- 
tion. It is small in the one-pass method (0.00) and large in 
the multi-pass method (0.44). The black box in the 
abscissa shows the number of implicants in each of the 
randomly generated functions, 6 in the case of thls exam- 
ple. Just above each histogram is a datehime stamp and 
the mvlc command that created the histogram. 

E. mvll - PLA Layout Generator 
mvll produces the layout of a current-mode CMOS 

PLA that realizes the given input expression. The layout 
conforms to the conventions of Berkeley’s Magic program 
[lo]. Thus, a Manhatten scalable CMOS design is pro- 
duced that satisfies the Meadconway lambda design 
rules. There are no options; the design is produced 
directly from the input. Fig. 12 shows the layout of a 
current-mode CMOS PLA produced by mvll that realizes 
the minimal expression of the running example (Fig. 10). 
Here, the two inputs (x00 and xO1) enter from the left, 
while the four product terms are laid out horizontally and 
are summed at the bottom to form the output (fQ0). 

VII. CONCLUDING REMARKS 
HAMLET is a CAD tool for multiple-valued logic 

expressions. It accepts a user-specified sum-of-products 
expression, attempts to find a smaller expression, and then 
produces the layout of a PLA that realizes the expression. 
In addition, HAMLET is an analysis tool. For example, it 
can generate random functions, apply chosen niinimiza- 
tion heuristics, and compile statistics. This allows us to 
compare heuristics. Yang and Wang [14] have used 

HAMLET to develop new heuristics for MVL-PLA 
minimization. An operation manual, Yurchak and Butler 
[ 151, exists showing the complete set of options available 
in HAMLET. Appendix A shows how HAMLET can be 
obtained over the ARPANET. 

HAMLET has been designed to be easily modified; 
for example, new heuristics are easily added, as well as 
layout generators for technologies other than current- 
mode CMOS. A significant part of the effort was devoted 
to developing a program that would have a long lifetime. 
Our expectation is that, as more experience is gained with 
MVL-PLA’s, they will become a predominant part of 
MVL circuit design. Since we have only a limited basis 
on which to choose heuristic minimization algorithms, we 
view this as a productive research area. HAMLET is 
highly structured, so that, with simple well-documented 
procedures, one can easily generate this companion 
software. For example, the EVAL function, a subroutine 
that accepts an assignment of values to variables and pro- 
duces a function value, can be easily changed to a fast 
table lookup program when significantly larger memories 
become available, allowing a truth table lookup. At this 
time, EVAL scans the linked list for the function value on 
the first call, stores the value (when storage is available), 
then simply returns this value on all subsequent calls. 
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Figure 12. Layout of a Current-Mode MVL-PLA That Realizes the Expression Minirmzed by HAMLET (Fig. 10). 
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TO YOUR ACCOUNT 
HAMLET is public domain software. No warranties 

are made regarding its operation. If you have an 
ARPANET connection, you can obtain HAMLET by log- 
ging into your account, moving to the directory where you 
will be using HAMLET, and applying the following pro- 
cedure. 

1. % ftp cs.nps.navy.mil 
Invoke the file transfer program, connecting to the 
VAX-11 in the Department of Computer Science at 
the Naval Postgraduate School. If this succeeds, 
you will see the login prompt. 

2. Login as username "anonymous", password (your 
own name) 

3. >cdpub 
Change the current directory to the public domain 
directory. 

4. >binary 
5. > get mv1.tar.Z 

Transfer the set of mvl programs to your directory 
on your home account. 

6. >bye 
Exit the Naval Postgraduate School's system. 

7. % uncompress mv1.tar.Z 
Convert the files to standard uncompressed format. 

8. % tar xvf mvl.tar 
Extract the files. 

9. %moreREADME 
Read the latest changes and instructions. 

10. % make all 

152 

http://cs.nps.navy.mil

